450

Tapan K. Sarkar (S69-M’76-SM’81) was born
in Calcutta, India, on August 2, 1948. He re-
ceived the B.Tech. degree from the Indian In-
stitute of Technology, Kharagpur, India, in 1969,
the M.Sc.E. degree from the University of New
Brunswick, Fredericton, Canada, in 1971, and
the M.S. and Ph.D. degrees from Syracuse Uni-
versity, Syracuse, NY, in 1975.

From 1969 to 1971, he served as an Instructor
at the University of New Brunswick. While
studying at Syracuse University, he served as an

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 32, NO. 4, APRIL 1984

Instructor and Research Assistant in the Department of Electrical and
Computer Engineering, where he is presently an Adjunct Assistant Profes-
sor. Since 1976, he has been ar Assistant Professor at the Rochester
Institute of Technology, Rochester, NY. From 1977 to 1978, he was a
Research Fellow at the Gordon McKay Laboratory of Harvard Univer-
sity, Cambridge, MA. His current research interests deal with system
identification, signal processing, and analysis of ¢lectrically large electro-
magnetic systems.
Dr. Sarkar is a member of Sigma Xi and URSI Commission B.

&

Short Papers

Determination of the Characteristic Impedance by a
Step Current Density Approximation

STEPHAN A. IVANOV AND GEORGI L. DIANKOV

Abstract —The step current densities are used to determine the char-
acteristic impedance of a transmlssmn line with rectangular shape of the
conductors. Numerical results for différent rectangular lines with asymmet-
rical position of the inner conductor are presented. The comparison of the
results for the square and rectangular coaxial lines shows quite good
agreement with the known data.

1. INTRODUCTION

The characteristic impedance of the rectangular coaxial trans-
mission line can be determined with good accuracy for all cases
of interest [1]. When the dxis of the inher and outer conductors
does not coincide and their dimensions differ considerably, the
problem becomes complicated. A general expression for the char-
acteristic impedance is derived in [2], but no numerical data are
given for the line with asymmetrical position of the conductors.
Also, a doubly eccentric rectangular line is considered by Chen
[3] for the case of a sufficiently small gap between conductors.
An analytical expression for the characteristic impedance of the
rectangular line with arbitrary dimensions can be found in [4].
Since the impedance in [4] is calculated by the utilization of the
mean value current densities, which may differ considerably from
the true current distribution ont the inner conductor surface, an
error of several percent exists. The purpose of the present short
paper is to improve the accuracy of the characteristic impedance
calculation by using the step cuirrent density approximation. In
this way, the edge discontinuity of the current distribution is
taken into consideration and an error less than one percent for
the impedance values can be obtained.

II. THEORETICAL RESULTS

The investigated rectangular transmission line is shown in Fig.
1. Since the cross section of this line coincides with the single cell
of the four-conductor line considered in [4], the characteristic
impedance can be determined by the expression (4) in [4]—the
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case of the odd—odd mode of excitation. Here it is proposed that
the current distribution J; (1) be replaced by a set of step current
densities J;,. For the case when the /,-wall is divided into N,
intervals with a length /, /N,, the final result for the characteris-
tic impedance of the ifivestigated line can be expressed by the
formula
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Fig. 2. Step current densities distribution for the line with dimensions: B=1,
S=D=02,W=04,T=02.

TABLE I
CHARACTERISTIC IMPEDANCE VALUES OF THE SQUARE COAXIAL
LINE WITH DIMENSIONS B=1,2S+ W=B,2D +T=1

W=T 0.1 0.2 0.3 0.4 0.5 0.6
Zrer.1|132.65 | 91.11 | 66.87 | 49.82 | 36.81 | 26.46
Zyvep | 13238 | 90.82 | 66.87 | 49.53 | 36.97 | 26.40

All dimensions are normalized with respect to the height of the
shield,ie, B=b/h,D=d/h,S=s/h, W=w/h,and T=t/h.
The step current densities J; , can be determined in different
ways: analytically, by electrolytic tank measurements, or by other
appropriate modeling. Below, the step current densities J,, are
calculated by the self-consistent field method (SCFM), described
in [5], where the recurrent expression for the case under consider-
ation is obtained. As an illustration of the SCFM, the step
current density distribution for the line with dimensions B =1,
S=D=02, W=04,and T= 0.2 is shown in Fig. 2.

III. NUMERICAL RESULTS

The calculation of the characteristic impedance is made by a
computer. First, the algorithm is checked for the square coaxial
line. The number of steps N, is chosen to be 10 for all walls and
the step current densities are calculated with three iterations [5].
A comparison of our results with Bowman’s data [1] is shown in
Table 1. For all cases, the difference is quite small—Iless than 0.5
percent. More detailed investigation (see Table II) shows that, for
the square coaxial line, it is enough to use about 3 ~ 5 steps and
2 ~ 3 iterations.

Further, several cases are taken into consideration.

1) The inner conductor is situated symmetrically in the square
shield— B=1,2S+ W= B, 2D+ T =1, The numerical data for
this case are presented in Table III, where a comparison with the

TABLEII
DEPENDANCE OF THE CHARACTERISTIC IMPEDANCE Z, (OHMS)
WITH THE NUMBER OF ITERATIONS p AND NUMBER OF STEPS N,
FOR THE SQUARE COAXIAL LINE WITH DIMENSIONS B =1,
28+W=B,2D+T=1ANDW=T=02

N, 10 7 5 3 1

P

2 90,8837 | 90,9441 | 91,0318 | 91,2573 | 91.5564

3 90.8223 [ 90.8935 | 90,9952 | 91.2394 191.5449

4 90.8164 [ 90.8887 |90.9931 | 91.2417 | 91.5500
TABLEIII

CHARACTERISTIC IMPEDANCE VALUES OF THE RECTANGULAR
CoaxiaL LINE WITH DIMENSIONS B=1,28S+ W=B,2D+T=1

T W Zotep 2 ean Az/2 (%)
0,05 0.2 121,63 123,17 1.3
0.1 0.2 108.53 110,66 1.9
0.1 0.4 80,32 81.35 1.2
0.2 0.2 91.20 92,99 1.9
0.2 0.4 67.20 68.98 2.6
0.2 0.6 50,02 51,88 3.5

TABLE IV

CHARACTERISTIC IMPEDANCE VALUES OF THE RECTANGULAR LINE
WITH DIMENSIONS B=1, 28+ W =B, D=0.1

T 0.1 0.2
W 0.2 0.4 0.2 0.4
Zotep 69,54 47.86 62,04 43,21
Byean 71,41 49,14 64,97 44,98
Ay/z 2.7 2.7 4.7 3.9
(%)
TABLE V

CHARACTERISTIC IMPEDANCE VALUES OF THE ASYMMETRICAL
RECTANGULAR LINE WITH DIMENSIONS B=1,S=D=0.2

T v Zstep Zmean A%%
0.05 0.2 97.20 98,09 1.0
0.1 0.2 86.78 88.54 2.0
0.1 0.4 65,58 66.41 1.2
0.2 0.2 73.54 75.63 3.7
0.2 0.4 56.73 58.41 2.9
0.2 0.6 44,04 45,30 2.8

results obtained by utilization of the mean value current densities
[4] is done. One can conclude that the step current approximation
improves the accuracy of the characteristic impedance calculation
by 1~ 2 percent.

2) The inner conductor is situated close to the bottom of the
square shield— B =1, 25+ W =B, D=0.1. The corresponding
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data are presented in Table IV. In this case, the difference
between Z., and Z,,, increases, especially for the thicker
conductors.

3) The inner conductor is situated asymmetrically in the square
shield— B=1, S=D=0.2. As follows from Table V, the ef-
fectiveness of the proposed method is greater for the thicker
conductors.

IV. CONCLUSION

The numerical data presented in Tables I-V show that the
utilization of the SCFM with the step current density approxima-
tion makes it possible to calculate the characteristic impedance of
a different TEM transmission line with rectangular shape of the
conductors with good accuracy. For the lines with symmetry,
even the one step approximation is enough, while the general case
of an asymmetrical position of the thick inner conductor into the
shield needs the utilization of the step current densities.
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Definition of Nonlinear Reflection Coefficient of a
Microwave Device Using Describing
Function Formalism

J. OBREGON anp F. FARZANEH

Abstract — At microwaves, it is necessary to define rigorously the large
signal reflection coefficient of a nonlinear device. In this paper, the
describing function concept is applied to the power waves incident on, and
reflected by, a nonlinear element.

This method allows us to define the nonlinear reflection coefficient
(NLRC) on the power wave basis.

This NRLC is then compared with that defined on the current or voltage
basis.

Numerical calculations applied to nonlinear elements illustrate the theo-
retical results.

I. INTRODUCTION

To use nonlinear devices, one might generalize linear concepts
such as impedance, admittance, and transfer function by the
so-called describing function method [1], [2]. These quantities
would be defined for given input signals.

At microwaves, generally, the quantity measured is the reflec-
tion coefficient (or S-parameters for n-port devices). So it is
necessary to define exactly the nonlinear reflection coefficient
concept and its relation with the nonlinear impedance.
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In this short paper, we define the nonlinear reflection coeffi-
cient by application of the describing function (DF) method to
the power waves, then we compare the nonlinear reflection coeffi-
cient (NLRC) and the nonlinear impedance of the same device.
Some numerical results concerning nonlinear elements will be
given.

At microwave frequencies, what is measured is the power of
reflected or incident waves; thus, one obtains by direct measure-
ment the reflection coefficient (S-parameters) [5]. So we should
define the describing function in terms of incident and reflected
waves. The definitions of the incident and reflected waves at the
device terminals are

o)+ Zyi(r)
a(t)————z‘/z—o (1)
b(1)= v(t)— Zyi(1) @)

2y,
where Z, is the reference impedance, and i and v are instanta-

neous current and voltage in the device.
In a linear circuit, the reflection coefficient is defined as

B

where F stands for Fourier Transform which can be also ex-
pressed as

Z(0)-Zy _ Yy~ Y(w)

M) =2z, " T, 7(0)

4)
but this does not hold for the nonlinear case.

II. NONLINEAR RESISTANCE
Let us suppose that the instantaneous relation between i and v
(for a purely resistive device) is i = f(v).
Substituting into {1] and [2], we obtain

_v+Zf(v)
a(t) YA Z
b(1)= =20 )

2VZ,
b and a are parametrically related; one can then draw the
characteristic curve and obtain

b=g(a). (6)
By application of the describing function method, one can seck
a linear approximation of this relation by putting

I 71 (8(a)=Tw-a)) dr = (7)

'y is immediately deduced as

fOTag(a) dt
n=—FF7" (8)

fOTazdt

B=Ty. 4

where B and A are amplitudes of the reflected and incident
waves.

and one can write
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