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Short Papers

Determination of the Characteristic Impedance by a

Step Current Density Approximation

STEPHAN A. IVANOV AND GEORGI L. DJANKOV

Abstract —The step current densities are used to determine the char-

acteristic impedance of a ~ansmission line with rectangular shape of the

conductors. Numerical results for different rectangular lines with asymmet-

rical position of the inner conductor are presented. The comparison of the

results for the square and rectangular coaxial lines shows quite good

agreement with the known data.

I. INTRODUCTION

The characteristic impedance of the rectangular coaxial trans-

mission line can be determined with good accuracy for all cases

of interest [1]. When the &tis of the inher and outer conductors

does not coincide and their dimensions differ considerably, the

problem becomes complicated. A general expression for the char-

acteristic impedance is derived in [2], but no numerical data are

given for the line with asymmetrical position of the conductors.

Also, a doubly eccerttric rectangular line is considered by Chen

[3] for the case of a sufficiently small gap between conductors.

An analytical expression for the characteristic impedance of the

rectangular line with arbitrq dimensions can be found in [4].

Since the impedance in [4] is calculated by the utilization of the

mean value current densities, which may differ considerably from

the true current distribution orI the inner conductor surface, an

error of several percent exists. The purpose of the present short

paper is to improve the accuracy of the characteristic impedance

calculation by using the step current density approximation. In

this way, the edge discontinuity of the current distribution is

taken into consideration and an error less than one percent for

the impedance values can be obtained.

II. THEORETICAL lZESULTS

The investigated rectangular transmission line is shown in Fig.
1. Since the cross section of this line coincides with the single cell

of the four-conductor line considered in [4], the characteristic

impedance can be determined by the expression (4) in [4]—the
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case of the odd–odd mode of excitation. Here it is proposed that
the current distributiori J~(1) be replaced by a set of step current
densities J~q. For the case when the l~-wall is divided into N~

intervals with a length lk \Nk, the final result for the characteris-
tic impedance of the investigated line can be expressed by the
formula

~’m=~’r~=cOsm++THc
The coefficients Z,,q,m = Zj,q,m are determined as fOllOWS:

z = Zlzqrm = Z22qrm = e-m”wfq-’+l/Nl.ZJllqm

.[l+e- 2tn7r(B– W(q–,+1/Nl,2))
1

[
+ e–mm W(q–r–l/N~, ~) 1+ ~–2m9r(B– W’(q-~-l/iV1,2))

1

[
_ze–mm W(q–r/Nl, z) 1+ ~–2m7r(B– W(q–r/N1, z))

1

.-(1 - ~-m~(~/M,2) 2J [e-mm(2S+ W(q+,-2/7V~,2))

. + e–mn(2B–2S– W(q+r/Nl,2))
1

%’qrm = .z23qrm
= (~- e-(m~~/W2))f~_ e-2FmSJ

.[e- nzm Pv(q-1/,vl,2) + e–mm(2B–2S– W(17/ZV1,2))

1

“qrm = (1 - ~-2m7sz )[~_e-2m.(B-s- w)]

z 14qrm = Z1’qrm = (~-e-( m~W/N~,2))

.[~_ e-m@S+ W(2q-1/Nl:,))]

.[e- m~w(l–(q/Nl, z)) — e– mm(2B–2S– W(l–(q/Nl,2)))
1

z 34qrm = e
-m.w(~_.e-2mzs )[~_ e-2mr(B-s- w)]

,,qrn, = [1- e-2mm(s+ ~)][~- e-2rn7{B-s- WJ], ~z
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Fig, 1. Rectangular transmission line.
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current densities distribution for the line with dimensions:
S= D= O.2,I’V=O.4,7-=0.2.

TABLE I
CHARACTERISTICIMPEDANCEVALUESOFTHE SQUARECOAXIAL

LINE WITH DIMENSIONSB=1,2S+W=B,2D+T=1

W-T 0.1 0.2 0.3 0.4 0.5 0.6

z
ref. 1 132.$5 91.11 66.87 49.82 36.81 26.46

z
step

132.38 90.82 66.87 49.53 36.97 26.40

B=l,

All dimensions are normalized with respect to the height of the
shield, i.e., B= b/h, D=d/h, S=s/h, W=w/h, and T= t/h.

The step current densities JL ~ can be determined in different
ways: analytically, by electrolytic tank measurements, or by other
appropriate modeling. Below, the step current densities JL ~ are

calculated by the self-consistent field method (SCFM), described
in [5], where the recurrent expression for the case under consider-
ation is obtained. As an illustration of the SCFM, the step
current density distribution for the line with dimensions B =1,
S = D = 0.2, W= 0.4, and T= 0.2 is shown in Fig. 2.

III. NUMERICAL MSULTS

The calculation of the characteristic impedance is made by a
computer. First, the algorithm is checked for the square coaxial
line. The number of steps N~ is chosen to be 10 for all walls and
the step current densities are calculated with three iterations [5].
A comparison of our results with Bowman’s data [1] is shown in
Table I. For all cases, the difference is quite small-less than 0.5
percent. More detailed investigation (see Table II) shows that, for
the square coaxial line, it is enough to use about 3-5 steps and
2-3 iterations.

Further, severaf cases are taken into consideration.
1) The inner conductor is situated symmetrically in the square

shield-B =1, 2S+ W= 1?, 2D + T=l. The numerical data for
this case are presented in Table III, where a comparison with the

TABLE II

DEPENDENCE 01’THE CHARACTESUSTIC lMpEDANCE Z,t,p (OHMS)

WITH THE NUMIIER OF ITERATIONS p AND NUMBER OF STEPSNk

FORTHE SQUARECOAXIAL LINE WITH DIMENSIONSB =1,
2S+W=B,2D +7’-1ANDW=T=O.2

EIl‘k
10 7 5 3 1

P

RH+H+
90,8837 90.9441 91.0318 91.2573 91.5564

90 8223 90 8935 90 9952 91 2394 91 5449

90.8164 90.8887 90.9931 91.2417 91.5500

TABLE III

CHARACTERISTICIMPEDANCEVALUESOFTHE RECTANGULAR

COAXIAL LINE WITH DIMENSIONSB =1,2 S + W= B, 2 D + 7’ = 1

~~

E
T w z

step
z

mean
AZ/Z (%)

0.05 0.2 121.65 123.17 1.3

0.1 0.2 108.53 110.66 1.9

0.1 0.4 80.32 81.35 1.2

0.2 0.2 91.20 92.99 1.9

0.2 0.4 67.20 68.98 2.6

0.2 0.6 50.02 51.88 3.5

TABLE IV
CHARACTERISTICIMPEDANCEVALUESOFTHERECTANGULARLINE

WITH DIMENSIONS B =1, 2S + W= B, D = 0.1

%

T 0.1 0.2

!4 0.2 0.4 0.2 0.4

zstep 69.54 47,86 62.04 43.27

zmean ‘ 71.41 49.14 64.97 44.98

A~$ 2.’7 2.7 4.7 3.9

TABLE V

CHARACTERISTICIMPEDANCEVALUESOFTHEASYMMETRICAL
RECTANGULARLINE WITH DIMENSIONSB =1, S = D = 0.2

E
J

T w z z
step mean A~~

0.05 0,2 97.20 96.09 1.0

0.1 0.2 86.78 88.54 2.0

0.1 0.4 65.58 66.41 1.2

0.2 0.2 73.54 75.63 3.7

0.2 0.4 56.73 58.41 2.9

0.2 0.6 44.04 45.30 2.8

results obtained by utilization of the mean value current densities
[4] is done. One c~l conclude that the step current approximation
improves the accuracy of the characteristic impedance calculation
by 1-2 percent.

2) The inner conductor is situated close to the bottom of the
square shield— B:= 1, 2 S + W = B, D = 0.1. The corresponding
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data are presented in Table IV. In this case, the difference
between Z,,eP and Z~,,n increases, especially for the thicker
conductors.

3) The inner conductor is situated asymmetrically in the square
shield— B =1, S = D = 0.2. As follows from Table V, the ef-
fectiveness of the proposed method is greater for the thicker
conductors.

IV. CONCLUSION

The numericaf data presented in Tables I-V show that the
utilization of the SCFM with the step current density approxima-
tion makes it possible to calculate the characteristic impedance of
a different TEM transmission line with rectangular shape of the
conductors with good accuracy. For the lines with symmetry,
even the one step approximation is enough, while the general case
of an asymmetrical position of the thick inner conductor into the
shield needs the utilization of the step current densities.
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Definition of Nonlinear Reflection Coefficient of a

Microwave Device Using Describing

Function Formalism

J. OBREGON AND F. FARZANEH

Abstract —At microwaves, it is necessary to define rigorously the large

signal reflection coefficient of a nonlinear device. In this paper, the

describing fnnction concept is applied to the power waves incident on, and

reflected by, a nonlinear element.

This method allows us to define the nonlinear reflection coefficient

(NLRC) on the power wave basis.

This NRLC is then compared with that defined on the current or voltage

basis.

Numerical calculations applied to nonlinear elements illustrate the theo-

retical results.

I. INTRODUCTION

To use nonlinear devices, one might generalize linear concepts
such as impedance, admittance, and transfer function by the
so-called describing function method [1], [2]. These quantities
would be defined for given input signals.

At microwaves, generally, the quantity measured is the reflec-
tion coefficient (or S-parameters for n-port devices). So it is
necessary to define exactly the nonlinear reflection coefficient
concept and its relation with the nonlinear impedance.
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In this short paper, we define the nonlinear reflection coeffi-
cient by application of the describing function (DF) method to
the power waves, then we compare the nonlinear reflection coeffi-
cient (NLRC) and the nonlinear impedance of the same device.
Some numericaf results concerning nonlinear elements will be
given.

At microwave frequencies, what is measured is the power of
reflected or incident waves; thus, one obtains by direct measure-
ment the reflection coefficient (S-parameters) [5]. So we should
define
waves,
device

where

the describing function in terms of incident and reflected
The definitions of the incident and reflected waves at the
terminals are

U(t)+zoi(t)
a(t)=

2&

b(t)=
U(z)–zoi(r)

2g

(1)

(2)

Z. is the reference impedance, and i and v are instanta-.
neous current and voltage in the device.

In a linear circuit, the reflection coefficient is defined as

F{ b(t)}

‘(u)= F{a(t)}
(3)

where F stands for Fourier Transform which can be also ex-
pressed as

r(@)=
z(tJ–zo _ YO– Y((A))

Z(6J)+Z0– YO+Y((J)

but this does not hold for the nonlinear case,

II. NONLINEAR RESISTANCE

(4)

Let us suppose that the instantaneous relation between i and v
(for a purely resistive device) is i = ~(u).

Substituting into [1] and [2], we obtain

I)+zof(u)
a(t)=

2fi

b(t)=
U–zof(l,l)

2A “
(5)

b and a are parametrically related; one can then draw the
characteristic curve and obtain

b=g(rz). (6)

By application of the describing function method, one can seek
a linear approximation of this relation by putting

JoT+{d”)-rNL””)}2d’=o
rNL is immediately deduced as

and one can write

(7)

(8)

B = rNLA

where B and A are amplitudes of the reflected and incident
waves.
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